产品案例

您当前的位置:主页 > 产品案例 >

一个真实案例教你运用数据分析

来源:http://www.qhjucheng.com 编辑:www.d88.com 时间:2019/03/24

  第二是网上的文章理论偏多,实际真实案例少,谁会用一大堆概念和飘在天上的话去工作;

  第三是对自己的复盘,算是对自己今年的一份重要的工作总结。话不多说,正文开始。

  在切入正题之前,先来总述一下数据分析的作用。通常的答案都是什么了解产品现状,知悉业务发展之类的,都不够概括,严格定义上的数据分析作用一共有4条:

  描述性分析,故名思义,主要是对已经发生的事实用数据做出准确的描述。比如某企业订单履约率从上月的98%下降到了95%,属于偏基础类的工作;

  诊断性分析,在知道了发生什么之后,更重要的是,我们要明白为什么发生。比如经过分析,发现订单履约率下降的原因是成品生产不出来,无法完成交付;

  预测性分析,基于上述两个层次的分析,我们发现了其中的规律,即原材料供应商的送货及时率会影响成品订单的履约率。假如上月某原材料供应商A送货及时率只有70%,通过建模,我们可以预测本月该供应商会使我们的订单履约率下降2%;

  处方性分析,有了预测性分析的结果后,我们无需再做事后诸葛亮,而可以运筹帷幄,在事前就采取措施。上例中,供应商A会导致本月我们的订单履约率下降,我们可能采取的措施就是把A换掉,但是现在有B和C两个供应商供我们选择,该选择哪个呢?通过分析和计算得出:选用供应商B会比选C的订单履约率高1%,因此建议选择供应商B。

  常规情况下,产品经理对于数据分析只需要掌握到诊断性分析即可,根据诊断性分析结果出相应的解决方案,后面两个更多的是数据分析师的工作,更为专业,深入。

  确定目的,别以为这个就那么容易,不夸张10个人有8个不知道自己想干什么;

  数据收集,其实就是定义指标,把指标和规则定义清晰,要看活跃,几日活跃,怎么算活跃,很大程度决定了研发的时间周期有多少,很多情况是产品没有想在前面,开发过程中反复去沟通,确认规则,导致数据获取的成本异常大,延期也就在所难免了;

  数据分析,要选择科学的分析方法,目前分析方法多种多样,对比分析、交叉分析、结构分析、平均分析等,根据这个案例选一个最适合的数据分析方法,才能事半功倍。

  案例开始,先同步一下背景,有一个内容型的小程序,各位理解成小程序版的今日头条即可,想要研究的是一进入小程序默认刷新还是手动刷新对用户流失的影响,当前为用户进入小程序后需要手动刷新,如果改成进入后程序默认刷新对流失有所缓解。

  其中退出行为分为,有效退出,无效退出,和无退出行为,有效退出定义一个有效退出时间即可,比如退出时间-进入时间大于10秒以上。有人说了,退出不是只会有直接退出吗,这里需要特别说一下,有交互的都已经分离出来了,只剩退出,怎么还分,因为有可能用户是在认认真真的看这屏的内容,一屏就已经到上次浏览过的,而这次新的没有感兴趣的,或者是用户上次误触退出,这次重新进入仔细观看,依然没有感兴趣的,再退出,无效退出与之相对,在条件外迅速退出的用户,判定为分析时要剔除的用户数据,要做细,整理一下可见下表:

  还记得最开始的题目吗,手动刷新改为默认刷新对用户的影响,我们需要从上述一大堆东西里拆出来的是你要用的,剔除掉无用信息用作分析。要的是想清楚我们要什么,以及定义清楚我们要什么,这是最难的。从交互层面来看分为刷新过和没刷新过,可以理解为把没刷新过的用户变为系统帮你刷新,而原有自己刷新的用户作为对照组,把无效退出作为结果,一般来看,无刷新肯定没新内容,有刷新的情况统一一下,最后预估出来影响范围,一般来看,以本业务的情况,影响范围会有在线时间、浏览文章数、复登情况,主要考虑的是复登,因为你担心的是流失。

  先说“谁”该怎么划分呢。通过广义定义,我们可以区分为新用户和老用户,粗暴定义新用户是从未进入过小程序的用户,规则为当日生成的open id即判定为新用户当日活跃,无论当天多少次再回访,也均判定为新用户当日活跃;而老用户是已经生成open id的用户,老用户还可以利用活跃行为进行分层,常规来看可以分为次日活跃、7日活跃、30日活跃、90日活跃、1年内活跃,因为产品上线年,故此取前几种。

  有人说有必要这么麻烦吗?很遗憾,产品经理的价值就全在这里了,你若前期不麻烦,后期研发怎么办,skr~~这就是仅仅4种状态组合后的用户分层情况list,40种情况,每种,都要对应后续的行为进行接入分析,因为每种人群都是可以在后续做任意动作的,所以这个分析是多维对多维,当你都列清楚以后,你才能获知你真正要分析的数据到底是什么,记住别怕麻烦,怕的是不够用心。

  。不过很容易就能看出,有一些是可以合并的,比如dz-72,无论怎么调换都是一样的,这个表,对于数据可视化工具来讲,就是桑基图,这个货:

  我们费这么大劲是为了什么?用户动机,没错,上面的整理叫流程动机,我们分析的时候可以从结果动机下手,需要把相似的结果动机的流程放在一组,以上述为例,结果动机就是有效退出,或者无效退出。比如编号dz1-3可能是正常用户行为,dz4-6可能是没刷到感兴趣文章的用户(该做啥?优化算法!),dz7-9好像跟我们这个测试有关系,若把这些用户都变成有刷新行为(dz1-3)能提升多少复登数、阅读数、在线时长(KPI)呢?这就是精细化分析。不同的顺序对于不同的动机也不一样,比如一上来就刷新的,好像就是我们优化以后的预期情况?和哪个原始组作对比?优化了以后能提升多少KPI指标?是不是都能进行预估出来?

  请把需求提明白,前提是你能把你要什么想明白,别想当然,每一个动作牵扯的因素都非常多,想清楚在动手,另外,本次的流程我仅仅局限在做关键动作之前的拆解,而后续的影响分析更为重要,也就是上述的回流、阅读、在线时长等。假设你上了个策略,通过欺骗的手段让用户的转化率提升了,但是总体的7日效率下跌了,这还了得,时间线短了说对其它业务、功能的影响一定要想清楚,严重了说你要是影响了充值功能,可怎么办?一定要想好后果。

  在价值认知上,传统企业需要认识到数据分析是能够带来的巨大价值,且这种价值是可留存的,得天独厚的竞争壁垒;

  在方法论上,传统的企业不必在不同部门里面推行数据分析的各种方法体系,这些体系已经被欧美总结了至少30年,很多我们没有必要重新发明;

  在技术工具上,国内已经如雨后春笋一般生出很多数据分析平台,工欲善其事,必先利其器,这是每个企业提高效率最好的手段和途径,让传统企业转型高科技企业的难度大大降低。

  说了那么多,希望大家不要被网上那么多的概念所迷惑,产品经理不能为了数据分析而分析,而要将落脚点放到产品和用户上。数据分析应该帮助产品经理不断优化产品设计和迭代,驱动产品和用户增长,做好成本把控,风险预测才是本质目的。

  人人都是产品经理(是以产品经理、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位服务产品人和运营人,成立8年举办在线+期,线+场,产品经理大会、运营大会20+场,覆盖北上广深杭成都等15个城市,金融街控股股份有限公司公告(系列。在行业有较高的影响力和知名度。平台聚集了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一起成长。